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Abstract

This report summarizes some of the approximation-theoretic and

numerical issues encountered in solving operator equations oft he form
Lu = f. Particular emphasis is placed on Galerkin and finite element
approximations using multiwavelets. Examples are used to illustrate
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1 Introduction

Galerkin approximations and finite element methods for operator equations
of the form Lu = f play an important role in the theory of numerical dif-

ferential equations. Both are based on ascending sequences of trial spaces
generated, in general, by hierarchical bases. The different discretization lev-
els are allowed to interact, and this interaction is then utilized to reduce
errors in the numerical approximations. The use of local bases gives rise to
sparse stiffness matrices but these matrices are ill-conditioned due to the in-
teraction between the different discretization levels. The condition numbers
increase exponentially in the number of grid points or, equivalently, with
higher approximation levels. Preconditioners have to be used to exploit the
full potential of iterative solution methods. The theory of hierarchical pre-
conditioners for Galerkin and finite element methods is well developed, see
for instance [2, 7, 15, 17], and such preconditioners are explicitly known. The
construction of the preconditioned relies on the properties of the operator L
and certain estimates established in a scale of Sobolev spaces to be used in
the Galerkin approximations of the solution u.

Scaling vectors are collections of special functions that may be used to
construct nested sequences of approximation or trial spaces, called a mul-
tiresolution analysis. Associated with a scaling vector is a mdtiwavelet which
generates the difference spaces, usually referred to as multiwaveiet spaces, be-
tween successive approximation spaces. Certain classes of scaling vectors and
their associated multiwaveles provide fast multiscale transformations between
the different levels of discretization. Loosely speaking, in such approxima-
tion schemes the scaling vector is the carrier of the coarse level information
whereas the multiwavelet carries the detail or fine structure information.
Scaling vectors and multiwavelets have the potential to provide numerically
and computationally efficient algorithms for Galerkin-type approximations
of operator equations. In particular, they seem to give the correct frame-
work for adaptive and multiresolution schemes to obtain solutions that vary
drastically in space and time and develop singularities. Moreover, they fit
into well-established multiscale methods for operator equations and possess
sound approximation-theoretic foundations.

The structure of the survey report is as follows. In Section 2 the mathe-
matical setting for the type of operator equation considered in this report is
introduced and some remarks are made about the existence of unique solu-
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tions. Next, scaling vectors and multiwavelets are introduced as generators
of refinable spaces. Some properties are discussed and fast multiscale trans-
formations are introduced. A specific scaling vector and multiwavelet, the
so-called GHM and DGHM elements, are presented. As the GHM and the
DGHM element is based on fractal functions, a few brief remarks are made
about the properies and features of such functions. The recursive structure of
the GHM and DGHM element, its interpolator nature, and its property of
being easily adjustable to both bounded intervals (without introducing new
boundary functions) and nonuniform geometries are direct consequences of
its construction. The next section focuses on the approximation-theoretic
foundations of multiscale methods. In particular, for differential operator
equations of the form Lu = f the relevant Sobolev spaces are defined and
the fundamental Jackson- and Bernstein-type estimates for multiscale meth-
ods are presented. The convergence and approximation properties of scaling
vectors and muItiwavelets then follow from these estimates. Furthermore,
the preconditioned for the Galerkin method is derived, and it is shown that
it may be interpreted as a change of basis operator between different levels of
approximations. Section 4 considers a Galerkin method for a very simple dif-
ferential operator equation on [0, 1], namely, L = –A. Here, for illustrative
purposes, all relevant quantities are explicitly derived.

2 Refinable Spaces, Scaling Vectors, and Mul-
tiwavelets

In this section the mathematical setting for operator equations of the form
Lu = f is presented, and the important concept of a refinable space is intro-
duced. The generator of this space, the so-called scaling vector, is presented
next. The associated multiwavelet is then defined as the generator of certain
refinable difference spaces. Properties of these functions are discussed and a
particular example of a scaling vector and its associated multiwavelet con-
sidered. Some brief remarks about fractal functions and their features close
out the section.
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2.1 The mathematical setting

This report focuses on some of the approximation-theoretic and numerical
issues regarding the solutions of operator equations of the form Lu = f. For
the sake of simplicity, it may be assumed that L is a second order elliptic
differential operator, although the results stated here will apply to a much
larger class of operators. To obtain an approximate solution to such an
operator equation several points need to be addressed.

● A function space .F must be identified in which the solution u is ex-

pected to lie. In most cases 3 may be assumed to be a Hilbert space.

. Conditions need to be imposed on the operator L and possibly the
right-handside f that guarantee the existence of a unique solution in
F.

● A basis of 3 is to be found so that an algebraic system associated with

Lu = f is efficiently solvable.

These issues will now be presented in a more precise fashion.

Operator equations of the form Lu = j have a natural setting in the theory
of Hilbert spaces. Let %, WI, and ?i2 by Hilber spaces satisfying either one
of the following two sets of inclusions

7i1Gti G%2 or ?12L?-t GR1. (2.1)

The above inclusions, called continuous embedding, have to be interpreted
in the following way. Denote by (., .)7, where 3 is either H, or %1, or ‘R2, the
inner product on the Hilbert space 3, and by II . l]; = (“, “)7 the associated
norm. Then Eqn. (2.1) means that there exist positive constants c1 and C2
so that

Cll[ “ [/w2s II“ Ilw s C211‘ II%? (2.2)

and similarly for the second set of inclusions. For most operator equations
of the form considered here, %2 is the dud space of ‘HI, i.e., the linear space
of all continuous linear functional p : ?-tI + R.

Example 2.1 The differential equation

–u” = f, on [0, I] with
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has the weak formulation

—

Integration by parts yields:

J
1

u“vdx =
/

1 fvdx
o 0

J
1

u’v’dx - (u’(l)v(l) - u’(())v(())) = /1 fvdx. (2.4)
o 0

The last equation suggests that the solution u should be chosen from the
Sobolev space 171([0, l]), Z.e., the space of all functions that are limits of
infinitely differentiable functions @with compact support 2 in (O, 1) relative to
the norm ll@l\~l = ll@ll~Z+ 114’IIu, and v from the Sobolev space H~([O, 1])=
{0 = ~’([o, 1]): 4(0) = 0(1) = O}. (Note that since u needs to satisfies
the boundary conditions u(0) = u(1) = O, u is also in H; ([0, 1]).) Moreover,
since L here is the differential operator @/dx2, f can be chosen from the space
H-l ([0, l]), the dual space of H;. (The Sobolev space H-l ([0, 1]) contains

distributions such as the Dirac d-function.) Since it is known that

j H;([O, 1]) ~ L2([0, 1]) L H-l([O, l]),\ (2.5)

one finally has Z = L2 ([0, 1]). The weak formulation (Z.4) may then be
expressed in the form

(u’, V’)L2 = (f, v)~z. (2.6)

Remark 2.1 In the above example, the di~erential operator L = –d2/dx2
has order two and therefore, if u c H1([O, 1]) then f = Lu c H1-2([0, 1])=

H-l ([0, 1]). More generally, if L is an operator of order t and if u is a
function in the Sobolev space H’ then Lu is in the Sobolev space HS-2’.
Here, for any positire integer s, Hs (0) is the space of all functions that
are limits of infinitely differentiable functions ~ with compact support in Q
relative to the now lldll~l = l14bll~z+ x~=l llfts)ll~z. For latter puwoses,
Sobolev spaces with noninteger index s need to be defined. One way of doing
this is via Fourier transforms. To this end, let s >0 and nonintegral,

IH’(R) = {f c L2(JR) : JR(l + 1(J12)S]~(U)12dLJ < CO} . I (2.7)

2The support of a function @is the largest closed interval outside of which the function
is identically equal to zero.

5



Definition (2. 7)) may be then be used to define the spaces H’(Q). Sobolev
spaces H’(Q) with negative index s are the dual spaces of H-S(0).

The question of existence of a unique solution of Lu = f is addressed next.
If the operator is a bounded linear one-to-one and onto mapping from the
Hilbert space ?-il into the Hilbert space ?iZ, then the aforementioned operator
equation has a unique solution. The conditions on L may be re-expressed in
the following way: there exist two positive constants c1 and Cz such that

These above conditions are for instance satisfied if L is a linear self-adjoint
positive definite3 elliptic differential operator. (Cf. also Example (2.1 ).)

Now the last point, the choice of an appropriate basis for the Hilbert space
3 containing the solution u, is taken up. To this end, let {~~ : A 6 A} be a
countable basis for 3. (Here A is an index set which may be assumed to be
a subset of the positive integers or the positive integers themselves. ) Then
each u c 3 can be expressed in the form

u= ~ c~lh, for some real coefficients .,. (2.9)
AEA

The sum in this representation of u is interpreted as follows. Let Ak be a
finite subset of A with the property that #Ak + #A 4 as k ~ 00. Then
Eqn. (2.9) means

Substitution of (2.9) into the operator equation Lu = f yields

~ c, L+, = f. (2.10),
AEA

3A liiear operator L is called selj-adjoint if (Lu, v) = (u, Lv) and positive definite if
(Lu, u) >0.

4The number of elements in an index set A is denoted by #A.
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Letting canal+ be the (column) vector (CA:A G A) and (@~:A E A), re-
spectively, multiplying on the right by @, and transposing ( T denotes the
transpose) the resulting equation produces an algebraic system for the un-
knowns c:

I(L@, @)Tc = (j, @)T. \ (2.11)

At this point several options are available to obtain a numerical solution.

●

●

●

●

Choose the basis @~: A ~ A} in such a way that the – possibly infinite
k—matrix (LV, o) is diagonal. This, however, is not possible in the

majority of cases.

Apply a preconditioned P to the system (2.11) such that

P(W> @)Tp

is efficiently solvable.

Choose a basis in which (L@, tj)~ has a sparse representation.

Instead of using the entire basis {@J : A e A}, adaptively consider only
those basis elements which give an accurate-description of the solution
u and discard the remaining ones. This amounts to solving the system
in certain subspaces of F.

The next subsection contains a brief summary of terminology and symbols
used.
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2.2 Frequently used symbols

IN:
z:
JR.:

f):

T[@]:

L2(Q):

II“11L2:

(“> “):

f+]:

set of natural numbers 1,2, . . .
set of integers ... ,–2, –1,0,1,2, . . .
set of real numbers or the real line

open connected domain on the real line lR (Q = lR included)

the linear span of all integer-translates of a function @
lin span{ @(z – 1) :1 e Z}. Any ~ G ~[@] is of the form

f(~) = z;Em Cl@(z - /).

space of all functions ~ with the property that Jo I~ (z) 12cLzis
finite (square integrable functions on !0.)

L2 norm: llfll~z = ~-.

L2 inner product: (~, g) = JQj(z)g(z)dz

the closure of 7[0] in L2 (R), i.e., the set of all functions ~
such that, given any sequence {@.} of functions from r[@],
the norm IIj – @. IIL2 can be made arbitrarily small by choos-
ing n large enough.



f:

H“(Q):

I/“ llHn:

H’(R)

II“IIHS:

H;(Q) :

II“IIfz:

Fourier transform of a function ~ G L2(IR):

~(u) = JR ez’wj(z) dz

Sobolev space consisting of all functions ~ defined on $2with
the property that ft”) =& f/d& GL2(fl) (n positive integer)

Sobolev norm: /lfll~*=lljll~z+~~=ll/ftnlll~2 (n positive
integer)

Sobolevspace ofall functions ~~L2(IR) such that

JR(l+l~12)s lJ(u)12ti <m. (s>0)

Sobolev norm: ]l~llH~= JR(l+\w/2)s l~(w)12dw(s>O)

Sobolev space consisting of all functions ~ c H’(Q) such that

~ = O on the boundary Wl of Q.

norm for square-summatde sequences {%}: 11%jl~2 = z~=o If% 12.

2.3 Shift-invariant spaces

A space of functions V contained in L2 (R) is called shiji%zvarinat or trans-
lation invariant if for every function j < V and every 1 G Z the integer-
trans.late or shift f(z – E) is also in V. Such shift-invariant spaces may be
generated by choosing a particular function 0, called a generator, and taking
the linear span of all its integer-translates ~[h] = lin span{h(z – 1) : / s Z}.
In order to ensure that the limits of sequences of functions from ~[@] belong
to ~[@], the shift-imariant space needs to be the closure of ~[@] in the L2-
norm.5 The closure of ~[@] is denoted by a[@]. A shift-invariant space V
that is generated by a singze function @ is called a principal shifl-invariant
space and written as 1- = a[@].

As an example of this procedure, consider the hat function defined by

{

1 – 1X1,
h(z) = o

–l~x<l
otherwise,

(2.12)

5The closure of a space S in the L2-norm consists of all functions ~ that are limits of
sequences of functions from S.
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Now take the linear span of all its integer-translates: ~[h] = lin span{h(z –
.f):le Z}. Since thehatfunction hisin L2(lR), f!llh(z)12dx =2/3, the
space o[h] consists of all functions ~ in L2 (R) which can be written in the

for a sequence of real coefficients satisfying

It is worthwhile noting that sums such as those in Eqn. (2.13) which
functions from L’ (JR) are to be understood in the L’-sense, namely,

(2.13)

(2.14)

involve

(2.15)

The space a[h] may also be characterized as consisting of all piecewise lin-
ear functions in L2 (Et) with integer knots. In other words, any function ~
in L’(R) whose values ~(z) are given on integer knots x = 1 G Z has a
representation of the form (2.13).

Shift-invariant spaces may be constructed using more than one function.
More precisely, if @l,@’,... & are functions from L’(R), then the closure
of the linear span of the translates of all these functions defines what is
called a jinitely generated shift-invariant space, FIS space for short. To
simplify notation, let @ = (~1, ~’, . . . ~) and write V = a[@] instead of

v = cJ[{q9,(j2, . . .q!f}].
An example of a FIS space is given by V = [h, q] where h is the hat func-

{

4Z(1– Z), O<z<l ‘.
tion and q(z) =

o,
Since q N a quadratic function,

otherwise.

the space V = a[~, q] contains all piecewise quadratic
with integer endpoints.

functions on intervals

2.4 Refinable spaces

It is an easy exercise to show that the hat function h
equation:

h(z) = ;h(2z + 1) + h(2z) + ;h(2z – 1). (2.16)

satisfies the following
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Equations of the form (2.16) are called refinement or two-scale dilation equa-
tions, for, they express a function, here h, in terms of the dilates by two and
integer translates of itself. More generally, any equation of the form

(2.17)

is called a refinement equation. The sum in Eqn. (2.17) may be finite or

infinite; it is finite if and only if the function j has compact support. Note
that Eqn. (2.17) is equivalent to

The concept of refinability gives rise to a refinable space. To this end, let
D denote the operator which dilates by a factor of 2: (D~)(z) = ~(z/2). .4
space of functions V is called refinabie provided that

D(V) C V U f(z) ● V implies ~(z/2) E V. (2.19)

An example of a refinable space is V = a[h]. For, by Eqn. (2.16) with x
replaced by x/2, h(z/2) is in V. Thus, since every function ~ in V = a[h]
is a linear combination of the translates of the hat function h, ~ (z/2) is
also in V. One can also interpret this result from an interpolation-theoretic
point of view: if a function in V = a[h] interpolates at the integers. it also
interpolates at the even integers.

A space V = o[@], with generators @ = {@l, 42,... W} is refinable if and
only if, the (column) vector of generators @ = (@l 42 . . . @)~ satisfies

for some sequence of real r x r matrices {Ge: A c A}. Here A denotes a finite
or possibly infinite subset of the integers Z. As all generators @, . . . . d’ are
elements of L2 (R), i.e., @ e (L2 (R) )T, the matrices Ge, t 6 A, satisfy

l% llG112<00. I (2.21)

Here II. [1denotes a matrix norm, for instance, the spectral norm.
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Consider again the principal shift-invariant space V = o[h] generated by the
hat function h. Note that

(h, h(. -1)=/’ h(z)h(z - l)dz = 1/6 = (h, h(. + 1).
–1

(2.22)

Inother words, thegenerator hisnotorthogona16 toits integer translates. As
the hat function is used in finite element methods, this lack of orthogonality
is reflected in the well-known fact that the stiffness matrix is tridiagonal.
A way to remedy this situation is to replace the single generator h by a
pair of generators that are orthogonal to each other as well as their integer
translates. The following example shows how to obtain orthogonal generators
for V = a[h].

Example 2.2 Start again with the hat function h(x). Introduce a new and
yet unknown continuous function u supported on [0, 1], and define V =
a[h, u].

The main idea, due to [5], is to modify the hat function h in such a way

that a new function v is obtained that satisjies

● v is supported on [–1, 1];

● v is a linear combination of h, u, and U(X + 1);

● v is orthogonal to its translates v (x & 1) and to u;

● V = CT[U,V]. (This means that the original space remains unchanged;

only new generators have been chosen.)

For this purpose, define

(h, U) (h, u(z + 1)) U(Z + ~,——
‘(z) = h (U, u) ‘- (u, u) “

(2.23)

Note that u and its translate U(X+ 1) is projected out of the hat function, thsu
making v orthogonal to u. As u is already orthogonal to its integer shifis,
only v needs to be orthogonal to its translates (by symmetry it sufices to only
consider the translate to the right)

(V,v . -1) = o.

‘Two functions in L2(0) are caled orthogonalif (f, g)Q = ~Q~(z)g(z)dz = 0.
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This, however, is equivalent to

(2.24)

Choosing for u the function

{

x, O<x <l,
u(z) =

O, otherwise

yields

{

l–3x/2, O<x <l,
v(x) =

o, otherwise “

Clearly, u and v are orthogonal generators and since they are both supported
on the unit interval, they are also orthogonal to their integer translates. No-
tice that the new generators u and v satisfy a matrix refinement equation:

(2.25)

The generators u and v have one apparent disadvantage: they are not con-
tinuous across integer intervals [/, 1 + 1],/ C Z

In order to construct generators for the space V = a[h] that are continuous
across integer intervals, a more sophisticated choice for u must be made.
To this end, employ the refinability condition. Namely, if u(z/2) E V then
u(z/2) must be a linear combination of h(x – 1), u, and U(X – 1):

u(x/2) = h(x – 1) + SoU(X)+ SIU(X – 1), (2.26)

for some real constants so and S1. But Eqn. (2.26) is recognized as a so-

called inhomogenous two-scale dilation equation. The unique solutions of
such equations are afine fractal (interpolation) functions. Since some of the
properties of such functions are important for future developments, a short
introduction to the theory of fractal functions is given in the next subsection.

Choosing so = SI =: s causes u to be symmetric about the line x = 1/2.
Employing properties of affine fractal functions, one obtains

(h, U) = (h, U(X+ 1)) = 4(11 s,

(u, u) =
2+s

6(1 – S)2(1 + S)
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Since (h, h(z – 1)) = ~, the orthogonality condition (2.24) yields

w
Thegraphs of thetwoorthogonal generators areshown in Figure 1. In the

Figurel: Theorthogonal generators uandv.

literature, the functions uandvare referred toasthe GHMelement [9]. The
function vconsists oftwoaffine fractal functions: one supported on [–1,0]
the other on [0, 1].

The FIS space V = a[{u, v}] generated by the GHM element contains the
space V = o[h] generated by the hat function; for h is a linear combination
of u, U(Z + 1), and v (cf. Eqn. (2.23)). However, u is not in V = o[h];
hence V = o[h] is a proper subspace of V* = o[{u, v}]. Nevertheless, the
GHM element has the same approximation-theoretic properties as the hat

14



function: piecewise linear and constant functions are reproduced exactly [6].
In other words, there exists a finite sequence of real vectors {c~} such that

(2.27)

on any jinite interval with integer endpoints. The space of piecewise linear
polynomials on integer intervals can therefore be described either as V = a[h]
or as V* = cr[u,v].

2.5 Rudimentaries from the theory of fractal functions

In this subsection, an exemplatory introduction to the theory of fractal func-
tions is presented. This presentation is not the most general one, but for the
purposes of this report sufficient. The interested reader is referred to [12] for
a more detailed and general introduction to the subject.

Let {(zj, yj) : j = 0,1, 2} be a given set of interpolation points and let jO
be any continuous function satisfying

~o(%) = I/j> j=o,l,2.

Define an operator T by

where &(z) = cl(z) + dl, 1 = O,1, is the unique afine function such that

(Tfo)(zo) = fo(zo), (Tfo)(z,) = jI)(@),

(Tfo)(zl-) = f,(q) = (Tfo)(xI+).

Join-up conditions to guarantee continuity

The coefficients ae, be,Ct and de are

al = X1+1 —z! be =Z2—ZIJ~

C/ = “+’-:,:s;~-v”) , df =

explicitly given by

X2Xt–XOX/+1
Z2—2X) ~

e=o,l
~2?Jf–ZOW+l –’f (Z2Y0–ZOY2 )

Z2 –Zll

15



The se,
shortly.

The
tinuous

1?= O,1, are free parameters whose magnitude will be determined

iterates of the operator T applied to ~. generate a sequence of con-
junctions:

f/t+I= Tfk = T(Tk.fo), kelN. (2.29)

It can be shown that if max{ [sO1,Isl I} < 1, this sequence of continuous
functions {fk} converges to a continuous function f as k ~ ~:

.fk(~)-+f(z), for all x C [ZO,Z2] as k ~ m

with the property that ~(zj ) = yj, j = O,1,2. The limit function f is called
an affine fractal (interpolation) function [1, 12]. The term j?actai expresses
the, in general, jractal nature of the graph off.

It follows from Eqn. (2.29) that f is the unique fixed point of the operator
T:

Tf = f % f(z) = A(z) + ~j=o slf (~) . (2.30)

Here

{[1

AO*, Zo<z<zl

A(z)= Al & , X~<X<X~.
o, otherwise

and ~ was set to be identically zero outside [0, 1].

Eqn. (2.30) also implies that the graph of f is made up of two affine images of
itself, each of which is made up of two affine images of itself, each of which is
... ad infinitum! Generally, an afine fractal function does not have a closed
representation, i.e., it is not possible to write such a function in terms of
simple expressions.

The recursive structure of Eqn. (2.30) allows the exact calculation of
moments and inner products of affine fractal functions. To this end, let f be
an affine fractal function. The zeroth moment off is defined as

A40(f ) = /’2 f (z)dx, (2.31)
Xo

and the jirst moment off by

Ml (f) = /’2x f (Z)dz. (2.32)
XO
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Employing Eqn. (2.30 ),itcanbe shown that

(2.33)

and

Ml (j)= ~~=o [~1~~~(~t~+h)~~(z)ti+a~btS, MO(!)]
1

I–xt=o af Sf
(2.34)

These results together with Eqn. (2.30) then provide a formula for the L2-
inner product of two fractal functions ~ and g interpolating at the same knot
points {s0, zl, zz}.

where the pl are the affine functions associated with g. The inner product
(At, g) can be expressed as

and similarly for (pt, f). In other words, to calculate any of the preceding
quantities only the interpolation points and the free parameter so and S1 need
to be known; they alone completely determine the al, b~, cl, and de.

Example 2.3 Let Z. = O, xl = 1/2, and Z2 = 1. Let so = S1 = –1/5. Then

A)(x) = x Al(x) = –x+ 1.

The fixed point equation (2. 30) of the resulting afine fractal function u then
reads

{

2x – (1/5) u(2x), 05x51/2
u(x) = 2X _ 1 – (1/5)u(2x – 1), 1/2 < x S 1

Notice that, replacing x by x/2 in the above equation, gives precisely Eqn. (2.26)
with so = S1 = –l/5-

As pointed out above, the second component of the GHM element, v,
consists of two fractal functions; the first interpolates (–1, O), (–1/2, –3/10),
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on the interval [–1, O], and the second (O,1), (1/2, –3/20), on the interval
[0, 1]. The afine functions A[ are thus given by

On [–1,0]: AO(X)= –x/10 – 1/10 Al(z) = 3z/2 + 6/5, (2.37)

and

On [0, l]: AO(Z)= –3x/2 + 6/5 AI(z) = z/10 – 1/10, (2.38)

respectively.

Despite their ‘tagged nature”, affine fractal functions do possess a certain
degree of regularity. This degree of regularity depends on the size of the
parameters so and S1. For simplicity, assume that a. = al = 1/2. An afine
fractal function belongs to the Sobolev space W(R) [14] if

~
(2.39)

and s < min{-t, 3/2}.

Example 2.4 For the afine fractal functions u and v in the GHM element,

condition (2. 39) is satisfied for all s < 3/2. In particular, this implies that
u and v have derivatives eveywhere on [0, 1], respectively [– 1, 1], except at
points of the form i/2~, i = 0,1,..., 2~, j = 0,1,. ... respective~y i/2~, i =
–2~, . ..1.0,1, 1,2~, j=O,l, O,l, . . ..

The derivative of an affine fractal function j obeys a similar fixed point
equation as (2.30):

Notice that Eqn. (2.40) is just (2.30) with & replaced by (l/al)& and se
by sl/al. This observation, in particular, implies that the formulas for the
moments and inner products apply to derivatives of affine fractal functions
as well (with the above replacements.) These formulas are explicitly given
by

=
(2.41)
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and

I
(2.42)

2.6 Multiresolution Analyses

Refinable FIS spaces are examples of sequences of nested spaces generating

multiresolution analyses. More precisely, a multiresolution analysis (MRA) of
L2 (R) (of ndiplicity r), consists of a sequence of closed subspaces {V~ : k ~

ml)}, INl) = {o,1,2 ,.. .}, of L2(R) 7 such that

Nestedness V~ c V~+l, for all k ~ No.

Approximation The union &eNo V~ is dense in L2(IR).

Shift-invariance The spaces Vk are shift-invariant, i.e., f(z) c Vk implies
f(z – L) c V~, for all 1’in some index set ~~.

Refinability f(z) ● Vk if and only if ~(2z) c V~+l, for all k < INo.

Basis Property The space V. is generated by a finite set of functions @ =

{41,$2 ,..., @}: V. = o[@]. In other words, the functions @l, @2,..., ~

are the generators of V.; every f 6 V. may be written in the form

for a unique sequence of real (column) vectors {c~ : f?C 1~}.

Stability The collect ion @ of functions is uniformly stable, i.e., there exist
positive constants RI and R2 such that for any sequence of real matrices
{c,:/ E1,}

7A subspace S of L2(R) is closed if the limit of every convergent sequence of functions
defined on S is in S.
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Remarks 2.1 1. If+ = {&, @2,..., 4} are uniformly stable generators

2.

3.

4.

for ~, then @k = {@1(2kx), q$2(2kx),..., @(2kx)} are uniformly stable
generators for Vk. (This follows from refinability).

The nestedness of the spaces vk implies the existence of real matrices
{Gkt} such that

@(ZkZ– 1)= &Ik+, Gk,p-2.@@k+lx– ~’), (2.45)

for all 1 ~ 1~. Rejnability implies that the index k in Gk~ concerns only
the size of G~t, but not the entries. The matrices {Gk~} are sometimes
called the matrix mask or the low pass filter mask of the scaling vector
a.

Eqn. (2.45) maybe rewritten in matrix form as follows. Define @k(x) =
(@(2kz – l?): ~ ~ ~k) and simiZar@ for @k+~(~). Then

k!?ewd (2.46)

where A: is the #Ik X #Ik+l matrix whose entm”esare &,ee! = Gk,p _ze.

For computational purposes, one usually requires the generators of VO
to be compactly supported. By refinability, this then implies that the
generators for all the spaces vk are compactly supported.

An MRA is called orthogonal if the generators @ = {41, 02,...,@} of VO,
and thus the generators @k of vk, are orthogonal. In the context of vector
functions, orthogonality if defined as follows. Two (column) vector functions

S = (CICZ . &)~ and @ = (&02.. . 19,)T are orthogonal on L2 (0) if

[:

JO(l(~)~l(~)~x “““ JQ(I(x) $(x)dz

1
@z@~(z)dx = f~~z(~)yl(x)~x ““” JQW):(WX = ~,x,

. . .

k(r(x)~d~)d~““. JQ&(+%4Wd
(2.47)

Here OTXr denotes the r x r zero matrix. To simplify notation, the inner
product of vector functions E and 63 on L2 (Q) will also be written as (=, ~).
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Remark 2.2 The (column) vectors in Eqn. (2.43) are the inner products of
f with the vector function G:

The generators @ = (@l,.. ., ~)~ of an MRA are usually termed multiscaling
functions or scaling vector. If r = 1, the generator is called a scaling function.

An example of an orthogonal MRA of L2(IR) of multiplicity 2 is provided
by the GHM element [9] constructed above. The generators are clearly com-
pactly supported and continuous. In the case r = 1, the Daubechies scaling

functions [8]are a family of compactly supported orthogonal generators with
increasing regularity for an MRA of L2 (Et). The simplest scaling function in
this family is the Haar scaling function OH. It is defined by

{

1, O<z<l
@H(Z) = O, otherwise. (2.49)

Since @His supported on the interval [0,1] it is automatically orthogonal to
its integer translates. Moreover,

#H(z) = ;@(2z) + ;q$H(2z - 1),

i.e., go = 1/2 = gl. The spaces Vk which are generated by the Haar scaling
function {@H(2~z)} consist of all piecewise constant functions from L2(IR)
supported on intervals of the form [1/2~, (1+ 1)/2~], t 6 Z.

As V~ c Vk+l, the difference spaces Vk+l 0 V~, consisting of all those funct ions
in Vk+l which are not in Vk may be employed to obtain a multiscale basis for
L2 (lR). These difference spaces are usually called (multi) wavelet spaces and
denoted by W~:

Vk+l= Vk @ Wk, for all k C INo. (2.51)

The generators of wk are called (multi) waveless. The ~k must be chosen in
such a way that the {o~, O;, . . . ,4} U{$M7.. ., o~} are uniformly stable.
If the spaces vk have r generators, the spaces wk have also r generators
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*k = {’+;,’@;,-..,~~}. Furthermore, ~~(z) = @(2kZ), z = 1,..., r, where. .
V’ 1S one of the r generators of WO. If the generators of VO, and thus of
V~, are orthogonal the sum V~ @ ~k is an orthogonal sum; every j c V~ is
orthogonal to every g ~ ~k: (j, g) = O. Since W,, C Vk+l, there exist real
matriCeS {~k~: ~ ~ ~k} such that

w (2% – 1) = ~/r@ Hk,tQ@(2~+1z – 1’), (2.52)

As before, the index k on ~k~ indicates only the size of the matrix, the entries
are independent of k. Here Jk is an index set such that #~k+l = #~k + #Jk.
Commonly used terms for the matrices {~k~} are matrix mask or high pass
filter mask. As above, it is convenient to define ~k(~) = (~(2~z-~) : ~ E ~k).
Then

~
(2.53)

where ~~ iS the #Jk X #Jk+l matrix whose entries are ~k.& = ~k,&_Z~.

One important feature of scaling vectors and multiwavelets is that all
relevant information about their properties is contained in the matrices {Ge}
and {EIl}, respectively. In particular, one has

(Orthogonality of integer translates for@)

(Orthogonality of integer translates for ~)

(Orthogonality between@ and ~)
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Here d~ and d~. are the Kronecker Deltas:

Given an orthogonal MRA generated by a scaling vector 0, one way of ob-
taining orthogonal generators for the multiwavelet spaces is by choosing the
matrices {Ht : /?E Jo} so that Eqns. (2.55) – (2.57) are satisfied. In the case
when r = 1, the scalars he have a particularly simple dependence on the ge:

Ihe = (–l)zgN-t. I (2.58)

Here N is one less than the number of terms in the refinement equation for
the Daubechies scaling function @ g$(x) = Xzo g@(2z – f).

For example, the wavelet associated with the Haar scaling function has
ho = 1/2 and hl = – 1/2 and is explicitly expressible as

{

1 o<z~l/2
@H(x) = –1 l/25x51 (2.59)

o otherwise.

The multiwavelet associated with the GHM element consists of two gen-
erators both of which are affine fractal (interpolation) functions. Figure 2
below displays their graphs. Note that it is possible to have one generator
symmetric and the other one antisymmetric about the y-axis. This is an im-
portant feature of the GHM and DGHM element. In the Daubechies family
there do not exist symmetric/antisymmetric scaling functions or wavelets,
with the exception of the discontinuous Haar scaling function and wavelet.
Certain applications in image compression and signal processing do require
symmetric/antisymmetric bases.

As already indicated above, the GHM and DGHM element does not have
closed representation. This also holds true for the Daubechies family of
scaling functions and wavelets; the only exception is the discontinuous Haar
scaling function and wavelet. However, for all computational purposes, it
is not necessary to have an explicit expression for scaling functions, scaling
vectors, wavelets, or multiwavelets. All the information about these functions
is contained in the known and accessible matrices {G~t} and {Hke}. In
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Figure 2: The orthogonal DGHM multiwavelet.

order to elaborate on this point, the fundamental concept of a multiscale
transformation needs to be introduced.

Convention: Unless explicitly mentioned, all scaling vectors and the multi-
wavelets are assumed to be orthogonal generators of their respective spaces.

Sinc$ V~+l is a direct sum of V~ and W~, the #1~+1 x #1~+1 matrix Mk =

()B!
is invertible and

Denote the inverse of M~ by ~k = ( C~ @). Then

The matrices c: and D: satisfy

4ik Ck + Bk Dk = Ik+l,

(2.60)

(2.61)’

(2.62)
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and

]Ck Ak = 1,, DkBk=I;, DkAk=O=Ck Bk.l (2.63)

(Compare with Eqns. (2.54) - (2.57)!) Here 1~+1 denotes the #1~+1 x #1~+1
identity matriX, Ik the #~k x #~k identity matrix, and ~~ the #~k x #~k
identity matrix. Equations (2.62) and (2.63) are referred to as multifilter
relations. If the generators for vk and ~k are orthonormal then ~~1 = M;.
The matrix ~k is also called the discrete multiwaveiet transform.

Example 2.5 Consider the Haar scaling function q5Hand the Haar wavelet
@H. The functions @k and ~k are given by

@k(~) = (2kf2@H(2kZ– f) :1= 0,1,... ,2k – 1),

and
~k(~) = (2ki2@H(2kZ – ~) :1= 0,1,.. .,2k – 1),

respectively. Thus, Ik = {O, 1, ..., 2k – 1} = Jk. The factor 2k/2 was added to

normalize the functions.- f; 12ki2#H(2kZ – -t)\2dz = f; 12kf2y5H(2kZ– /) 12dz =
1. Then, since

@(x) = ;@H(2x) + ;&(2x - 1),

one has

@q2% -t)= 2-’qqF(2k+% - 21)+ 4F(2k+’z -21- 2)]

and

#q2% – q = 2-qqF(2k+% – 2/?)– 4Yq2k+1z – 2/– 2)].
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Thus, the 2k+1 x 2k matrices Ak and Bk are given by

Ak =

and

Bk =

~ooo”””o

+000 ”””0

o +00”””0

o *o O”””o
. . . .. . . .. . . .

0 . . . O“*o
o . . . 00$0

0 . . . 000+

o . . . 000 &

5 0 00”’”0
——+:?0”””0

0 moo””” 0

0 –“+ o 0 ““” o
. .. .. .

0“:”00 *O
o . . . 00–*0

o . . . 000 $

0 . . . 000–+

respectively. Eqn. (2.61) reads for the Haar scaling function and wavelet as
follows

@~(2k+’z -24= 2-’qqYq2% - i?)+@f(2% - /)]

and
~~(z’+’z -2/ -1)= 2-’/’[q5~z2’z - 1) - ?JF(2% - q].

2.7 Multiscale bases and multiscale transformations

Starting with a fixed level k = K in the decomposition (2.51) of Vk+l into vk
and ~k and proceeding to level O, one obtains a multiscale representation of
a function f ● VK. More precisely,

EEizzEl (2.64)
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and a function ~ G VK may be expressed in single-scale representation with
respect to the single-scale basis {@K} as

or in multiscale representation with respect to the mukiscale basis {Qo} U&~ {Vk }

as

(2.66)

Here the c and d are real scalar coefficients whereas c and d are real vector
coefficients whose dimension is given by the cardinality of the corresponding
index set. Recall that @k(Z – ~) = @(2kZ – ~) and likewise for ~k (x – ~).
Employing Eqn. (2.61), the multiscale representation of @k may be succinctly
written as

(2.67)

where the lk x ~k matrix wk iS Of the fOrm

Wk _ wk-~ O— ( )017
(2.68)

with O being the zero matrix and I the ~&l x ~k–1 identity matrix, respec-
tively.

The matrix (H~=~l WK-k) is an example of a multiscale transformation.

A multiscale transformation applied to the vector coefficients of a function
j E V~ gives rise to the so-called fast reconstruction and decomposition
algorithm. To this end, consider

27



Hence,

()ck+l=/i@k+Bkcik=@ ~k. (2.71)

In other words, M; is an operator which maps the pair of sequences (ck, dk)

of length #~~ and #~k, respectively, to the single sequence Ck+l of length
#l~+l.

Remark 2.3 In the present setting, namely an MRA on L2 (JR),
#1~ = (1/2) #Ik+l. This situation changes when the real line lR is

by a proper open subset Q.

In component notation, Eqn. (2.71) reads

ck+l,~ = ~e: Gel–w Q,! + H~l–Qedk, t.

#Jk =
replaced

(2.72)

Note that only the even indices are used to obtain ck. Zeros are used for the
odd indices (interlacing of zeros or upsampling by 2: ~ 2).

The reconstruction algorithm (2.71) is schematically described in Figure
3. The matrices Jik act along the horizontal arrows, whereas the matrices

(2.73)

Figure 3: The reconstruction algorithm

Bk act along the diagonal arrows.
Reversing the reconstruction algorithm produces the decomposition aZ-

gorithm. M~ltipliy Eqn. (2.69) by @~ and use the orthogonality relations
between @k and ~k to get

C;+l(@k+~, @k) = Cf(@k, @k);

now employ Eqn. (2.46) and transpose to obtain

EEEl (2.74)
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In a similar way one shows that

k@?&ll (2.75)

In component notation these two equations read

C~,/ = ~1/G~~–2/ck+l/ and dk,e= ~etHp_zeQe. (2.76)

Notice that ckanddk aresan@edonlyat the even integers (down-sampling
by 2: 4..2).

Combining Eqns. (2.74) and (2.75) into one gives

(a=(:;)Ck+l = Mk Ck+l. (2.77)

Hence, the operator ~k assigns to each input sequence ck+~ of length #~k+~ a
pair of output sequences of length #~k and #~k, respectively, where #~k+~ =
#~k + #Jk. The matrices A: act along the horizontal arrows, the 13~ along

co+c~+...+c~_~ +c~

\ \ h“ \ (2.78)

dO dl ..- dK-2 dK_~

Figure 4: The decomposition algorithm

the downward diagonals.

If the scaling vector @ and the associated multiwavelet W have short sup-
port, then the matrices Mk and ~k are uniformly sparse. If, in addition,
#~k+~/#~k ~ Q >1 (in the present setting, ,q = 2; cf. Remark (2.3)), then
application of ~~~01 WK–k and (~~=;l WK-k)–l requires the order of #IK
operations, uniformly in K [3].

Letting K + co in Eqn. (2.66) gives the resolution
sequence of multiwavelet spaces {Wk : k G No}:

of L2 (Q) in terms of the

(2.79)
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Hence, any ~ in L2 (0) may be represented in the form

The & are called the multiwavelet coefficients off.

3 Approximation-theoretic Issues

The focus of this section is on the approximation and regularity properties of
Galerkin-type methods. In such methods, the solution space, usually some
Hilbert space %, is approximated by an ascending sequence of trial or ap-
proximation spaces {Vk : k = 0,1,.. .}. The quality of the approximation
as well as the regularity of the solution depend on approximation- theoretic
properties of the trial spaces.

3.1 Jackson and Bernstein estimates

The two basic estimates that give the quality of approximation, respectively,
the regularity of the approximant are

● Direct or Jackson Estimate:

The positive constant C’l is independent of k and s, but may depend
on fi.

● Indirect or Bernstein Estimate

[IVIIHS< c2.2’k Ipllp> V c Vk. (3.2)

Again, the positive constant C’z is independent of k and s, but may
depend on CL

Remarks 3.1 1. Eqn. (3.1) estimates the error in approximating a func-
tion f in the Sobolev space H’(Q) by an element v of the trial space
Vk. Note that the smoother f or the larger k, the better the approxi-
mation. The exponent –sk gives the rate of approximation or rate of
convergence of the approximator v to the approximant f as k + cc.
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2.

3.

Eqn. (3.2) estimates the regularity of the approximator v in terms of
its L2-norm.

Closely related to the Jackson estimate is the concept of approximation
order[~, 11, 10). Let h > 0 be an integer, and let vh(x) = v(x/h).
Define vh to be the space consisting of all functions vh such that v C V

vh is a dilate by h Of V). A space V has approximation orders if for
every compactly supported function f c HS(IR)

inf{l[f – vll~z : v c V} s C3hs[lj[l~., (3.3)

for some positive constant C3 independent of h ands. It is well-known
that a space V has approximation orders if and only if it contains the
space of real polynomials IF’s of order at most s, i.e., of degree at most
s – 1: IPs c V. Note that s here is necessarily an integer z O.

It is known that the refinable space V = a[h] generated by the hat function
h has approximation order 2. In other words, every function in V = o[h]
reproduces exactly polynomials of order at most two, i.e., of degree at most
one: IP2 ~ V = o[h]. Recall that the last statement means that there exists
a finite sequence of real constants c1 with the property that

Zp = ~ cgh(z – ~), p=o,l
e

on any finite interval with integer endpoints.

Example 3.1 It was shown in [6] that the GHM element has the same ap-
proximation order as the hat function, namely two. (Cf. Eqn. (2.27)) Using
the interpolator nature of the GHM element, one can easily derive the vec-
tor constants in Eqn. (2.2’7,). For instance, the partition of unity for the

{

1 O<X<l
DGHM is obtained as follows. Let X(X) = o’ ot~em~se and let +l(x) =

?

{
#2(z)8 restricted to the interval [0, 1]: ~i(z) = ‘2$)’ ~t~exm~s~ , and let

7

{
@(z) = @’(z -1) restricted to [0, I.]: @(z)= ‘2(X0- 1)’ ~t~exm~s~ . Set

7

X(X) = 1 = cl~~(z) + cz&(x) + c3@r(x), for all O < z <1.

8T0adhere to standard notation, we set ~1 = u and q52= v.

31



Now use that #(0) = 1, @’(O) = O = @(O), q!(l/2) = @(l/2) = –3/10,

@(l) = 1, and q51(l) = O= @l(O), to obtain

c1 = 1; cz = 8/5 c~ = 1,

and thus

To obtain the vector coefficients for the reproduction of, say the function

{

z, O<z<l
P(x)= o, Othewise ‘ the orthogonality properties of the GHM element

may be ~mployed. For this purpose, iet

p(z) = 1 = CI@Z(Z)+c@(z) +c3qY(z), for al/O < x <1.

and multiply this equation by q$, ~, and qf, respectively, and integrate over
the interval [0, 1]. By orthogonality, this yields

or more succinctly,

cl = ~o(@l) MO(W) C3= MO(41)

IWIIL’ C2= [l@]IL, 11+’]IL2“
Employing Eqns. (2.34) and (2.35), gives

c1 = o, C2= 3/5, C3= 1.

Z’ha.tc1 needs to be zero should be clear since q?(0) = 1, #r(0) = O = @l(O),
and p(0) = O.

32



The next result indicates under what conditions a scaling vector generating
an MRA satisfies the fundamental Jackson- and Bernstein-type estimates.
To this end, let @~ be a collection of functions from L2(f2). If

Orthogonality: @~ is an orthogonal collection of functions, i.e., (@~, @~) =
o.

uniform Boundedness: The functions ~k,l in @k satisfy l]~k,~]l~zs C, for
all k and 1 and some positive constant C independent of k and 1.

Compact Support: The functions in @k are compactly supported.

Approximation: The space V generated by @k contains the real polyno-
mials of order s: lps G V = ~[@k].

Regularity: Let y be the largest positive number so that for alls < -y, each
function @k,~in @k is in ~’(~).

then the Jackson estimate for ~ in H’(Q)

[/t.f- (f>@k)@kl/Lz~ CIZ-Sk]1.fl[i-I..I (3.4)

and the Bernstein estimate

I[lvlllr~< f322skI141L2, ‘/J● V ‘~[@k]. (3.5)

hold. The inner product in Eqn. (3.4) are the vector coefficients in the
expansion of a function ~ with respect to the orthogonal generators @k of
V = ~[@k], and, as usual, c1 and C2are positive constants independent of k

and s.

Suppose the sequence {Vk : k c INO} generates an orthogonal MRA of L2(Q)
and ~k is a basis for vk. For a function ~ ~ L2 (~), let ~k denote the
projection off onto Vk. Then ~k~ may be written in the form

~kf(~)= &@k = &~k c;4@(2% – 1), (3.6)

for vector coefficients ck and eke. (In case that V. is generated by only one
scaling function, the coefficients cke are scalars.) Using the orthogonalit y of
the scaling vectors @k,

(Cf. Remark (2.2)).

Eqn. ( 3.6) may be written as
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Remark 3.1 The orthogonality of the scaling vector* is equivalent to

lP~P~ = P~, for all k s m.] (3.8)

Since the multiwavelet spaces are given by ~~ = Vk+levk, thedHerenCe

(P~+l – Pk)f is an element of W~, and by orthogonality, each function in W~
may be written in this form. The orthogonal projections Q~+l = P~~l – P~
project a function ~ from L2 (R) onto the multiwavelet space W~. Moreover,

P~.f = ~(Pj – P’.l)f = ~ Qj.f. (3.9)
j=l) j=o

Here, P_ I = O.
For an orthogonal MRA, one can show that if the Jackson estimate (3.4)

and the Bernstein estimate (3.5) holds, then

Icl lull%s z:=022skll(8C– R-l) fll:2< C2Ilmw I (3.10)

for positive constants Cl and C2. (P_l is defined as O.) Note that 22s~II(P~ –

P~-l)f ll~z is a weighted L2-inner product on the multiwavelet spaces Wk.
The regularity of the projection Pk~ of ~ is bounded by the regularity of j:

IIRIIW s c311fllH~,I (3.11)

for some positive constant C3. Notice that by the orthogonality of the mul-

tiwavelet spaces, ~~=o 22’~II(F’~– P~_l)f/1~2 = z~=o 2sk(Pk – Pk-1).f ~,. h

terms of the multiwavelet bases, the inequalities in (3.10) read

G Mm < Ilwn)% sC211.fllw. (3.12)

Here, D~ denotes a diagonaz matrir with entries 2ks and V the entire mul-
tiwavelet basis including @o. The inequalities in (3.12) express the fact that
the weighted wavelet coefficients are indicative of the regularity of the func-
tion f.
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3.2 Preconditioning

Here it is assumed that the spaces {V~ : k c INo} are used for trial spaces in
a Galerkin method. Then the solution u of the operator equation Lu = f
is approximated by u~ = Pku = ~}=o(Pj — Pj_l)u = x~=o Qju7 i.e., its

(orthogonal) projection onto Vk. If a basis is chosen in such a way that the
conditions stated in the previous subsection are fulfilled, then the Jackson
eStimate (with ~ = u and uk = (u, @~)@k) gives the rate of convergence
of the approximate solution uk to the exact solution u: uk + u as fast as
2-ks + O as k + co. In other words, this rate is determined by the degree of
regularity and the approm”mation order of the solution u. The efficiency of a
Galerkin methods depends on

. The regularity/approximation order of the trial spaces vk;

● The condition number and sparsity of the stiffness matrix.

Example 3.2 The GHi14 element has approximation order 2 and smoothness
s < ~ = 3/2. Thus, the rate of convergence is governed bys < ~ = 3/2. This
rate is the same at that for linear finite elements, i.e., the (non-orthogonal)
spaces generated by the hat function h.

To simplify notation, let ~sf = ~~o 2sk(Pk – P&~)f = ~~=o 2skQ~f. Xo-
tice that this may be thought of as a weighted representation of f in the
multiwavelet spaces ~k. In terms of a basis, Qk f is given by

Qd = (f, ~k)@k. (3.13)

Using this notation, the inequalities in (3.12) show that 2s, if interpreted
as an operator on the function j, is a shifl in the scaie of Sobolev spaces:
If ~ is in Ht then Zsf is in H’+t. (The statements in (3.12) only apply to
t = O, i.e., Ho = L2, but the result holds for all t # O.) Now the operator
L also acts as a shift in the scale of Sobolev spaces: If L has order t and
u is in H’. then Lu is in H’–t. The idea behind preconditioning is to undo
the effect of L onto u by applying a shift Y. For this purpose, consider the
stiffness matrix Sk expressed in the multiwavelet basis {@o} @s~ { !&I} of ~k.
To simplify notation, let @o = V_l and write W for the entire multiwavelet
basis @~l {Wj }. The stiffness matrix is explicitly given by

Sk = (LIU, @)T. (3.14)
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It is known that Sk is ill-conditioned for operators L of degree t # O; the
condition number of Sk increases ezponeniial~y in k (cf., for instance, [3,
7, 15, 16, 17]). The following line of reasoning shows how a preconditioned
is obtained. To this end, a simplification in notation is needed. We write

Ilflb’hw 11.fllM2 instead of CIIVIIHI s 11.flb’hs Qllflbh.
For the sake of simplicity, assume that L is a linear seZf-adjoint elziptic

operator of order 2s. Under this assumption, one has (cf. also (2.8))

(Here, * denotes the adjoint). For the approximate solution uk G Vk, let
wk = Esuk. Then by (3.10), for s # O,

and by (3.15)
llukl]~s N l\~;Luk\l~-..

Again apply (3.1 O), but now to ll~~Luk\l~-S, to obtain

and hence,

l@k[]LzNll(E-s)*~~L~kE-sw~ll~a. (3.16)

This last equivalence means that the operator L; = (X-s) *F’~LPkX-s have
degree zero (it maps L2 into L2) and are thus uniformly boundedly invertible,
that is,

IILIIIu, ll(L~)-l\l~’ = 0(1) as k ~ co.

For, the right hand inequality in

gives uniform boundedness of L~, whereas the right hand inequality yields
uniform boundedness for (L~)-l.

In particular, the matrix representation of Lj with respect to the multi-
wavelet basis @, given by

(3.17)
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has uniformly bounded condition number: cond (D;s) Sk D~s) = 0(1). Re-
call that D;s is the diagonal matrix whose entries are 2–sk.

The (linear) algebraic system associated with the operator equation Lu =
f has preconditioned ~k = D;s and is of the form

Pk Sk f’kdk = Pk fk.

In the above equation, dk are the multiwavelet coefficients of uk with respect
tO the basis q?k and ~k = (f, ~k).

Remarks 3.2 1. The stiffness matrix sk with respect to the entire mul-

2.

4

tiwavelet basis ~ may be obtained from the stiflness matrix (L@k, @k)
with respect to the single scale:

sk = ~;(L@k, @k)~k. (3.18)

The preconditioned pk is essentially a change of basis; it relates the
single scale representation to the multiscale representation as rej?ected
by the weighted operator V. Based on this interpretation an eficient
algorithm for the computation of pk sk pk employing Eqn. (3.18) may
be obtained (cf. [3]).

(a)

(b)

(c)

Compute g = W@~sx. The structure of the multiwavelet trans-

form W~ and the geometrical growth of the number #@k of the
basis elements ~k as k increases allows this computation to be of
order #@k.

Compute z = (L@k, ~k)~. The sparseness of (L~k, ~k) requires
operations of order #@k.

Compute D~’ W~z. This is essentially (a) above.

Therefore, the number of operations required and the memoy allocated
for the process is of order #@k.

A Simple Example: –Au = f

In this section, the simple differential equation –Au = j on Q = [0,1] with
boundary conditions u(0) = O = u(l) is considered. A Galerkin method

37



based on a single scale representation is employed to obtain an approximate
solution to the differential equation. The presentation of this example is of
a more didactical than mathematical nature; nevertheless, this example con-
tains all the ingredients and addresses all the relevant issues needed for a
more sophisticated mubiscale approach to linear second order elliptic differ-
ential equations.

Following Example (2.1), the natural setting for a Galerkin method is to
employ as trial and test spaces subspaces of the Sobolev space H; ([0, 1]). For
this purpose, appropriate local bases for the ascending sequence of such trial
and test spaces need to be constructed. In this section, the GHM element
@ = (@ ~2)T, as defined in Section 2, and the orthogonal MRA generated
by it is used to obtain such trial and test spaces. Since the test and trial
functions are to vanish at the boundary of [0, I], we define define

m
(4.1)

and for k z 1,

-
(4.2)

where @~ is the vector function

1)
@l(2kx)

4’(2X – 1)

@~(z) = @(2% –“ [2k – 1])
42(2% – 1)

42(2% -- [2’ - 1])

(4.3)

Hence, at level k ~ 1, scale 2-k, the space V; is spanned by the 2k translates
of the function ~1(2kZ) and by the 2k-1 translates of the function 42 (2kZ –“1).
Hence,

dim V~ = #@k = 2k+l – 1, k~l. (4.4)

Remark 4.1 The nested sequence of spaces {V) : k c INo} generates an

orthogonal MRA o~L~([O, 1]) = {~ e L2([0, 1]) : ~(0) = O = ~(l)}.
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To justify the above remark, some important geometric properties of the
GHM element need to be mentioned explicitly.

● By Example (2.4) the functions ~1 and @2,and thus their dilates and
translates are elements of H’ (0) for s < ~ = 3/2.

● By construction, the restriction of @(2~z – 1), i = 1,2, to fl = [0,1]
preserves orthogonality between the translates. This is a feature not
enjoyed by, for instance, the Daubechies scaling functions (except the
Haar scaling function). There is no need to introduce so-called bound-
ary functions to retain orthogonality between the translates.
This observation allows the construction of an orthogonal MRA of
L2([0, 1]) [6, 12].

. Discarding in the approximation spaces for the orthogonal MRA of
L2 ([0, 1]) all those functions that do not vanish at the boundary yields
an orthogonal MRA of L~([O, 1]).

The GHM element fulfills all the conditions listed in the previous section
to guarantee the validity of a Jackson and Bernstein estimate. The Jackson
estimate, in particular, implies that the rate of convergence of an approximate
solution u~ to the exact solution u is given by s < y = 3/2.

Now let uk be the orthogonal projection of the exact solution u onto the trial

space V; (k ~ 1), i.e.,
uk(~) = C:@k(Z), (4.5)

for a coefficient vector of length #@’k = 2k+l – 1.
Substituting this expression into –Au = ~, multiplying by both sides b~

@$, integrating by parts and using the boundary conditions yields

(4.6)

To compute the entries in the stiffness matrix sk = (@~, @~)~, notice that
there are three types of innerproducts in sk:

1. Inner products of the form J; (@l(2Z – /))’ “ (01 (2Z – m))’ CLZ.

2. Inner products of the form f; (42(2’ – l))’ “ (@2(2Z– m))’ dx.

39



3. Inner products of the form ~~(~1 (2Z – l))’. (@2(2Z– m))’ dx.

Each of these three types is evaluated by a first applying a change in variables
jj=2kx-t. Taking into account that the support of @ (2kZ – 1) and

@2(2~z – f) is an interval of length 2-~, respectively, 2. 2-k yields

1. J~(#(2Z – /))’. (#1(2Z – m))’ dz = 2k j~(@l)’(x)(@l)’(z – m + l)dz

{

2k, t=m
=

O, otherwise “

2. J~(@2(2’ – /))’” (42(2’ – m))’dz = 2kJ~(q52)’(z)(@2)’(z – m + l)dz

{

2k, m=t, tkl
= o, otherwise “

3. J~(@(2z – /))’. (#2(2’ – m))’dz = 2kf~(q!J1)’(Z)(#2)’(Z – m + ~)dz

{

2k, m=~,l+l
=

o, otherwise “

Hence the (2k+l – 1) x (2k+l – 1) stiffness matrix has the following block
form:

(4.7)

where B1 is the 2k x 2k diagonalmatrix

IB1 = diag (((01)’, (4’)’)), I (4.8)

B2 the (2~ – 1) x 2k matrix

(4.9)
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with a = ((41)’, (@2)’(0+ 1)) and b = ((@l)’, (42)’), and B3 the tn”diagonal
(2’ - 1)x (2’ - 1) matrix

.[ )

c d o -o. 0
dcd... O

B~= ; ; ; ; ; (4.10)

Oo””. cd
Oo”””dc

with c = ((@2)’, (02)’) ad d = ((02)’, (q52)’(”— l)). Note that the entries in
the matrices B1, B2, and B3 are independent of the level k.

The entries in the matrices B1, B2, and B3 can be computed exactly
using Eqns. (2.41) and (2.42). This computation yields

((01)’> (41)’) = 100/21, ((@2)’,(~2)’) = 85/21, (4.11)

((d’)’, (02)’(” + 1)) = -80/21, ((d’)’> (42)’(” - 1))= 43/21 (4.12)

The linear system (4.6) may now be solved by applying the preconditioned
pk derived in the previous section.

Remark 4.2 It must be stressed that the above Galerkin method based on
the GHi14 element has same rate of convergence of uk to the exact solution
u as a Galerkin method based on the (nonorthogonal) MRA generated by the
hat function.
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